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Abstract

WAVEMAKER is a FORTRAN subroutine to simulate random non-Gaussian
ocean wave histories. It generates a first-order (Gaussian) wave process
with an arbitrary power spectrum, and applies nonlinear corrections based
on second-order hydrodynamics. Inputs to the routine include the first-
order spectrum, the water depth, and a set of locations in the along-wave
direction at which wave elevation histories are desired. It may thus provide
useful input to estimate loads on spatially distributed ocean structures and
ships.

The WAVEMAKER package also includes a separate driver program, which
facilitates input/output and generates several analytical spectral models.
Its input is specified in command-line format, similar to that of the TF-
POP program for hydrodynamic post-processing also developed in the
Stanford RMS program. An example problem is included to demonstrate
the use of WAVEMAKER and its driver.

In terms of methodology, WAVEMAKER first uses standard frequency do-
main methods to generate first-order Gaussian histories at each location.
For each of these, WAVEMAKER. then evaluates the full set of second-order
corrections according to hydrodynamic theory. Thus the first-order wave
process, with N components at frequencies w,,, gives rise to a total of N 2
corrections, spread gver all sum frequencies w, + W, and to another N 2
corrections over all difference frequencies w, — wp,.

WAVEMAKER also includes the ability to identify the underlying first-
order Gaussian history from a given observed time history. This feature
is particularly attractive for use in situations where the second-order non-
linearity in the waves is built-in into the structural response calculations.
To avoid double-counting therefore, the input waves should be filtered to
remove any second-order nonlinearity. WAVEMAKER takes in an input wave
history and identifies its first- and second-order wave components. This
identification, an inverse feature to simulation, is based on a Newton-
Raphson scheme to solve N simultaneous nonlinear equations to identify
the first-order waves which, when run through the second-order wave pre-
dictor, matches the observed waves.



Chapter 1

Introduction to WAVEMAKER 2.0

This release of WAVEMAKER software incorporates a major recent development achieved
at the Reliability of Marine Structures Program. This is the ability to successfully
identify the underlying first-order wave components for given target observed wave
histories. WAVEMAKER 2.0 is fully backward compatible, that is, results from a run
of earlier versions of WAVEMAKER can be exactly obtained with this new release. The
input files to earlier versions can be directly used in this new version. A version
history of WAVEMAKER follows:

e Version 1.0: Released in April 1995 and documented in Jha and Winter-
stein, 1995, Report RMS-17, contains simulation capabilities for second-
order random waves. _

e Version 1.1: Released in August 1995, includes modification of tempo-
rary intermediate output file to use less disk space and to reduce program
execution time by approximately 50%. Additionally, a DOS executable of
WAVEMAKER was included in this release.

e Version 2.0: Released June 1996, includes identification capabilities so
that underlying first-order wave history can be retrieved from an observed
wave history.

In this report, Chapter 2 includes a documentation of the simulation capabilities
and is largely taken from Report RMS-17. Chapter 3 documents the newly devel-
oped identification analysis capabilities, and the appendices include sample input and
output files for the simulation and identification examples presented in this report.
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Chapter 2

Simulation of Second-Order Random
Waves

2.1 Imtroduction

It is common in many ocean engineering problems to seek to simulate a time trace
of the wave elevation process, 7(t), at one or more locations in the along-wave direc-
tion. It is most typical to use a Gaussian model of 7(¢) for this simulation, which is
consistent with linear wave theory. This is due primarily to the ease of simulating
Gaussian processes, e.g. with FFT (Fast Fourier Transform) methods for an arbitrary

wave spectrum (e.g., Borgman, 1969).

We seek here to demonstrate and facilitate a similar frequency-domain simulation
capability for nonlinear random waves at a set of spatial locations (e.g., Figure 2.1).
These simulations split the wave elevation into a random first-order (linear) wave his-
tory, 71(t), and a corresponding nonlinear history 7 (t) which includes second-order
corrections. FFT techniques are used to generate 7:(t) with an arbitrary (first-order)
wave spectrum, Sy, (w). Physical principles are used to generate 72(t) from my(t),
based on second-order perturbation analysis of the underlying nonlinear hydrody-
namic problem. Thus if the first-order wave process has N components, at frequen-
cies wy, M2(t) includes N 2 second-order corrections, spread over all sum frequencies
Wn + Wm, and another N? corrections over all difference frequencies wp — Wp.

'Note that these second-order wave models are not novel; they date back at least
to the early 1960s (e.g., Longuet-Higgins, 1963). More novel, however, is their recent
confirmation with respect to various statistics of field measurements (Marthinsen and
Winterstein, 1992; Vinje and Haver, 1994) and wave tank studies of still more severe

3
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Figure 2.1: Simulated wave time histories at specified spatial locations

seas (Winterstein and Jha, 1995; preprint included in Appendix C). Such second-
order wave models also form the basis of state-of-the-art nonlinear diffraction analysis
of floating structures (e.g., SWIM, 1995; WAMIT, 1995). Note also that the model
of 75(t) used here varies explicitly with water depth, as predicted by second-order
theory, to reflect increasing nonlinearity as we proceed to shallower water depths.

2.2 Methodology

2.2.1 Underlying Theory and Assumptions

We first consider 7,(t), the first-order wave elevation, at a specific reference location
(say x=0). For either frequency-domain analysis or time-domain simulation, it is
convenient to write 7, () as a discrete Fourier sum over positive frequencies wy:

N N
m(t) =Y Arcos(wit +6;) =Re ) Apeilwsttoe) (2.1)

k=1 k=1

To randomize Eq. 2.1, the phases 6 are taken to be uniformly distributed, mu-
tually independent of each other and of the amplitudes A;. Furthermore, we assign
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random amplitudes 4; with Rayleigh distributions, and mean-square value
E[A?] = 28, (w)dw = 075 dw = wy — Wg—1 (2.2)

Finally, for purposes of simulation the lowest frequency interval dw is governed by
the total period T of the simulation:
27

dw = ?; ' (23)

Together, Egs. 2.1-2.2 ensure that each of the NV frequency components in Eq. 2.1
is itself Gaussian. We also caution against the common use of choosing deterministic
amplitudes, A,=o}, particularly when interest lies in preserving higher moments of
m (t)—or, similarly, the rms of second-order waves, loads, and responses. Use of
deterministic amplitudes can give unconservative estimates; e.g., second-order rms
values that are on average too small (Ude, 1994).

The resulting second-order wave at this elevation, 7,(t), is calculated from m; (t)
as
lt) = m(0) + Am(t) @4
in which An,(t) includes second-order corrections at sums and differences of all wave
frequencies:

N N
Am(t) = qRe 3 3 ApAn[Hypp@llon—snttOn=tu)] 4 f3 illomtum)isntonl] (3.5)

m=1n=1

In general, the functions H,, and H}, are known as quadratic transfer functions
(QTFs), evaluated at the frequency pair wy,,wr. Similar expressions arise in describ-
ing loads and responses of floating structures; in this case H; and Hj are calculated
numerically from nonlinear diffraction analysis (e.g., WAMIT, 1995). The leading
factor ¢ is included in Eq. 2.5 to alert readers to different QTF definitions in the
literature: various diffraction analyses use g=1 (WAMIT, 1995) or ¢=1/2 (Molin and
Chen, 1990).

In predicting motions of floating structures, in view of the relevant natural periods
interest commonly lies with either H, (slow-drift) or Hy (springing) but not both. In
contrast, in the nonlinear wave problem both sum and difference frequency effects play
a potentially significant role. Fortunately, unlike QTF values found numerically from
numerical diffraction, closed-form expressions are available for both the sum- and
difference-frequency QTFs for second-order waves (e.g., Langley, 1987; Marthinsen
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and Winterstein, 1992). Including the effect of a finite water depth d, for example,
the sum-frequency QTF can be written as

gkmkn _ 1 2 2 Q9 wmkg +wmkn2
HY = WmWn 29 (wm +wy, + wmw") + 2 wmwn(Wm+wn)
mn

1-— g-(‘—f:_%:)—, tanh(k,, + k. )d

_ 9 kmkn
2w Wn

1
+ %(wfn + w2 + wpwy) -~ (2.6)

in which the wave numbers k, are related to the frequencies w, by the linear dispersion
relation. Note that this QTF definition assumes g=1/2 in Eq. 2.5. This is the
convention assumed in WAVEMAKER. The corresponding difference-frequency transfer

function, H,,, is found by replacing w, by —w, in Eq. 2.6.

2.2.2 Implementation

On input the simulation method requests the desired number of simulated points,
npts, and the total duration T' to be simulated. To take advantage of discrete FFT
(Fast Fourier Transform) techniques, it assumes a regular spacing dt=T/npts between
points. Eq. 2.1 is then rewritten as

npts/2 npts )
mt) = 3 Apcos(wt+0;) = Re Y Xpe™*' 2.7
k=1 k=1

Here the X are complex Fourier coefficients. The lower half of these directly
reflect both the random amplitude A; and phase 6 at frequency wy=Fk - dw:

1. .
X = —2-Ake’0’° : k= 1..npts/2 (2.8)

The upper half are in turn taken as the complex conjugates (the symbol “*”) of the
lower half:

Xnpts—k = Xy ; k= 1l.npts/2 (2.9)
This reflects that unique information is contained only the lower-half frequencies;
indeed, any information in the upper half frequencies (above the Nyquist) is obscured
by aliasing.

Thus, the first-order wave process is generated by assigning random A;Ac and 6y,
defining X from Egs. 2.8-2.9, and finally taking the inverse Fourier transform to
recover the discretized time history 7; (¢;). To see this, note that since dt-dw=2m/npts,
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Eq. 2.7 can be evaluated at t=t; to give
npts -
m(t;) = Re Y Xye™mot/nets (2.10)
k=1
This is precisely the definition of the discrete FFT.

As a minor technical issue, note that the conjugate symmetry here ensures that
the “Real Part” operation in Eq. 2.1 is superfluous; i.e., no imaginary component is
generated. Also, to conform with the FFT routine used the array of X values is
shifted by one index: i.e., X; corresponds to the frequency zero (the steady term,
defined as zero), X, to frequency wy=dw, X3 to frequency wo=2 - dw, and so forth.

The second-order correction is generated similarly. Starting with Eq. 2.5, substi-
tuting ¢=1/2, N=npts/2 (Eq. 2.7) and X} from Eq. 2.8:
npts/2 npts [2 ) '
Amp(t) =2Re 3. S XmXoHj elomten)t 4 X X2 H, ellwm—wnt (2.11)
m=1 n=1
The leading factor reflects the product of g=1/2 and a net factor of 4 (since A, A, is
4|XnXn|). The program then seeks to rewrite both the sum and difference frequency
contributions in a Fourier sum analogous to Eq. 2.10. For example, the sum-frequency

is assumed of the form
npts

Anf(t;) = Re Y Yye?risk/nets (2.12)

k=1
The output Fourier coefficients, Yz, are evaluated by equating Egs. 2.11 and 2.12. This
implies a sum over all wave frequency pairs (wWm,w,) in Eq. 2.11 that give rise to output
sum frequency wy. The difference frequency Fourier coefficients are constructed in a
similar way, and added on the sum frequency Y coefficients. Once these combined
Y coefficients are found a (one-dimensional) inverse FFT is performed to recover the

second-order time history.

2.2.3 Multiple Spatial Locations

The linear dispersion relation can be used to generalize Eq. 2.4, which generates a
first-order wave at reference location z=0, to any other spatial location z in the along-
wave direction. The linear dispersion relation is first used to find the wave number
k, associated with each frequency w, in Eq. 2.4. The modified first-order simulation
then merely replaces w,t + 6, in Eq. 2.4 by wyt — knz + 6,. Equivalently, the original
phases 8, are first shifted to 6, — k,z before applying Eq. 2.8 to define the wave
Fourier amplitude X,,. These appropriately modified X, are also used in Eq. 2.11 to
find the corresponding second-order correction at this new location.
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2.3 Input Specification

This section describes the various inputs required by the program and the syntax of
the input to the driver routine for WAVEMAKER. This input is provided in the following

format:

keyword args ‘
where keyword is a reserved word and args are its arguments. A typical input file is

in the following format:

# Typical input file: syntax description

simulate duration npts seed

depth wvalue

psd psdtype psd_parameters

define varlimit value

define gravity value

write history filenamel filename2
write statistics filename3 filename/
location nloc

valuel

value?

valuenloc

Each of these lines in a typical input file is explained below:

# Typical input file: syntax description
Any line beginning with a “#” is treated as a comment line in the input file and is
ignored by the program. Blank lines are also ignored by the program.

simulate duration npts seed
The keyword simulate indicates to the program that the following three arguments

in sequence are:

o duration: Total desired duration (in seconds) of each of the simulated
wave histories (a real number). '
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e npts: Number of points required in each of the simulated wave histories
(an integer).

e seed: A real number (131071.0 for example) for generation of random
numbers. The seed may be changed by the user in order to generate a
different set of wave histories. The number should be between 1.0 and

231,

The resulting dt (time step) in the simulated histories is duration/npts. The mzgrd
variable in the driver program controls the maximum number of points allowed (Max-
imum npts = 2xmzgrd) in a simulation. The released driver program has mzgrd =
4096, so that specified npts can to up to 8192. The user may increase or decrease
mzgrd to suit his/her needs.

depth value

This line specifies the water depth at the site of interest. The keyword is depth and
value is a real number indicating the water depth. The units (meters, feet, etc.) of
this value should be consistent with the units of other input parameters.

psd psdtype psd_parameters
This line specifies the spectrum type to be used. The keyword is psd followed by

its arguments. psdtype may be one of the following: jonswap, bimodal, or boxcar.
If any other word is specified for psdtype, then it indicates to the program that an
input spectrum is specified in a file whose name is same as the word specified in place
of psdtype. More details regarding this input specification are given in the following
subsection.

define varlimit value [optional command]

If included, this line defines a constant varlimit whose value is a real number (be-
tween 0.0 and 1.0) equal to value. A warning is issued by the simulation routine, if
the estimated second-order power above Nyquist frequency is more than value times
the first-order power. If this line is not provided in the input file, then a default value
of 0.01 is assigned to varlimit.

define gravity value [optional command]
If included, this line specifies the acceleration due to gravity in consistent units.
value, a real number, is assigned to gravity. If not included, a default value of 9.807

meters/sec? is assumed.
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write history filenamel filename2 [optional command]
If included, this line specifies the files which contain the simulated time histories at

each location. The keyword is write history. The file filenamel contains the un-
derlying first-order (Gaussian) histories, and filenameZ2 contains the corresponding
second-order wave histories. The format of the output is presented in the following
section. If this line is not provided in the input file then default names of gauss.hist
and ngauss.hist are assigned to the output first- and second-order histories, respec-

tively.

write statistics filename3 filename/ [optional command]

This line specifies the files to which the statistics (mean, standard deviation, skew-
ness, kurtosis, minimum, and maximum value) of the simulated histories should be
written. The keyword is write statistics. The statistics for the simulated first-order
histories at each spatial location is written out in filename3 and the statistics for the
total second-order histories are written in filename4. If this line is not provided in
the input file then default names of gauss.stat and ngauss.stat are assigned to the
output files for the first- and second-order history statistics, respectively.

location nloc
This line specifies the number of spatial locations at which both the first- and total

second-order wave histories should be simulated in time. The keyword is location.
nloc (an integer) specifies the number of locations (maximum location allowed is 50).
valuel, value?, ..., valuenloc are the spatial values (real numbers) in consistent units.
The number of values should be equal to nloc. The user is forewarned that the spec-
ification of the spatial locations should be at the end of all other inputs required.

2.3.1 Wave Spectrum Specification

The input wave spectrum can be specified in various ways: spectrum values in an
input file, or spectrum type with related parameters from a default library.

psd filename
This specifies that the input spectrum be read from an input file named filename. The

format of this file is two free-formatted values per line, specifying a natural frequency
in radians per second and the one-sided PSD (power spectral density) ordinate for
that frequency in consistent units of squared amplitude (feet?, meters?, etc.) per
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rad/sec. Lines beginning with a “#” are regarded as comments and ignored. The
input spectrum may be specified on an irregular mesh. This is internally linearly
interpolated to a spectrum on a regular mesh specified by duration and npts. The
spectral ordinates below the minimum frequency and above the maximum frequency
specified in the irregular mesh are assumed to be zero.

Spectral models from the library are called upon using any one of the following
reserved names followed by their parameters (that are real numbers):

psd jonswap H, T, v
psd bimodal H, T,
psd boxcar o, w, Wi

The keyword jonswap invokes a JONSWAP spectrum pararnetefized by the sig-
nificant wave height H, (defined as four times the standard deviation of the wave
elevation process), spectral peak period T, (in seconds), and the peakedness factor 7.

The keyword bimodal invokes a spectral model proposed by Torsethaugen (Bitner-
Gregerson and Haver, 1991). This subdivides the H,~T, scattergram into three re-
gions, and assigns bimodal spectral shapes in several of these regions. Therefore, the
only input required for this bimodal option is H; and 7.

Finally, the keyword boxcar invokes a simple band-limited white-noise model of
the first-order wave spectrum. Its parameters are the rms oy, lower cutoff frequency
wio, and upper cutoff frequency wy; of the first-order wave spectrum. As in other cases
(e.g., the user-defined spectrum at various frequencies), the frequencies wi,, and wy;
here are assumed to be in units of rad/sec. Note also that non-zero values of the PSD
at zero frequency are not allowed in either file input or library model selections.

2.4 Output Format

A total of four output files are produced by the driver program. Two output files
contain the time histories: one for the underlying first-order wave histories and the
other for the total second-order histories. The other two output files contain wave
statistics: first four moments, minimum and maximum. Again, results for the first-
and second-order wave histories are separated into two files.
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2.4.1 Time History Output

As noted in the previous section, by default the first- and second-order histories are
written to the files gauss.hist and ngauss.hist. Other choices of output filenames
can be specified by the optional write history command. The format of this output
depends on the number of spatial locations specified. If the number of locations (nloc)
is less than or equal to 8 then the output is in Formatl otherwise the output is in
Format?2. Both of these formats write out 3 header lines beginning with a “4##” sign.
These are to be treated as comment lines in the output file. In order to explain the
two format styles, say that the spatial locations specified are x1, x2, x3, ..., xnloc.

Format1 outputs data in nloc+1 columns. The length of each column is equal
to the number of points desired in each simulation. The first column contains the
time increments in seconds going from 0 to T with dt = T/npts. Columns 2 through
nloc+1 contain the simulated history values at the specified locations x1, x2, x3,
...xnloc, respectively. Thus, column 2 contains the wave elevation at location x1,
column 3 contains wave elevation at location x2, and so on. '

Format?2 is for handling nloc greater than 8. The output begins with the time
increment Ti in seconds on a line by itself. The time history values for the specified
spatial locations at time Ti are written in the next line onwards, in sets of 10. So if 9
locations were specified (i.e., nloc = 9) then the time increment is printed on a line by
itself followed by a line containing 9 time history values at that time increment. The
next line contains the next time increment followed by another set of 9 values, and
so on. If, on the other hand say 28 locations were specified, then a time increment is
written on a line followed by 28 time history values (corresponding to 28 locations at
that time increment) in the next 3 lines. The first line of the 3 lines contains 10 time
history values for the first 10 locations specified. The next line contains 10 history
values for locations 11 through 20 and the following line which is the third line of the
set will contain only 8 history values for location 21 through 28.

2.4.2 Wave Statistics Output

The statistics of the simulated histories are also estimated by the driver program.
These statistics include the mean, standard deviation, skewness, kurtosis, minimum,
and maximum. As noted in the previous section, first- and second-order simulation
results are written by default to the files gauss.stat and ngauss.stat, respectively.
The optional command write statistics can alter this choice of output filenames.

The output format in both of these files begins with 2 header lines, each of which
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begins with a “#” sign. The output is in seven columns. The first column specifies
the spatial location. The following six columns contain statistics of the wave history
at the spatial location specified in column 1. Columns 2 through 7 contain, the mean,
standard deviation, skewness, kurtosis, minimum, , and maximum value in that order.

The next section presents some sample output files, to illustrate use of the WAVEMAKER
routine.

2.5 Example

In this section, we present a sample problem (copies of input and output files are
enclosed on disk). To illustrate, consider a simulation which samples the wave process
at regular intervals of length d¢t=0.5 [sec] over a total duration of T=2048 [sec]; i.e.,
npts=4096 points. We assume here the first-order wave spectrum to be of JONSWAP
form, with H, = 12 [m], T, = 14 [sec] and a peakedness factor v = 3.3. We further
seek to generate wave histories at 2 spatial locations: 0 and 60 [m]. Our input file for
simulating waves using WAVEMAKER should be:

# Gaussian and Nongaussian Wave Input File

simulate 2048.0 4096 8123872.0
depth 70.0
psd jonswap 12.0 14.0 3.3
write history gauss.hist ngauss.hist
write statistics gauss.stat ngauss.stat
define varlimit 0.01
define gravity 9.807
location 2
0.0
60.0

Alternatively, if we intend to use the default definitions in the program then our
input file could be (this will produce the same output as the extended version of the

input file):
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# Gaussian and Nongaussian Wave Input File
# (Alternative format)

simulate 2048.0 4096 8123872.0
depth 70.0

psd jonswap 12.0 14.0 3.3
location 2

0.0

60.0

The output files created are: gauss.hist, ngauss.hist, gauss.stat, and ngauss.stat.
The contents of these are listed in the following table:

Output File | Contents

gauss.hist | First-Order Time History

ngauss.hist | Second-Order Time History

gauss.stat | First-Order History Statistics
ngauss.stat | Second-Order History Statistics

Each of these output files is given in the Appendix A.

Figures 2.2 and 2.3 show a comparison of the simulated histories. Figure 2.2 com-
pares the simulated first- and second-order wave time histories at the same location
(the first of the two requested, defined arbitrarily as z=0 [m]). The file ngauss.stat
includes the estimated skewness of the second-order waves. At this location the
second-order wave history has a skewness of about 0.2. This positive skewness (com-
pared to zero skewness of Gaussian waves) indicates the systematic nonlinear effects.
This also gives rise to an asymmetry between peaks and troughs; in particular, the
extreme wave crest in the second-order simulation systematically exceeds the corre-
sponding extreme trough in absolute value. This tendency may be significant for
potential deck impact problems, particularly in older jacket structures with relatively

low deck levels.

Figure 2.3 compares the second-order wave histories predicted by simulation at
the two spatial locations, separated by 60 [m]. The phase lag at these two locations
is evident in the plot. It can be seen that a crest height at 0 [m] does not necessarily

imply a crest of the same height at 60 [m)].
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Chapter 3

Identification of First-Order Waves

3.1 Introduction

In ocean engineering practice it is common to assume the waves to be Gaussian
and any nonlinearity in the waves is embedded in the structural response analysis
(e.g., WAMIT, 1995). It has been shown in Winterstein and Jha, 1995 that observed
time histories generally contain nonlinearities, it is thus imperative to remove any
second-order effects in the incident waves so that we do not double-count these effects
in the resulting response estimation. Recent studies (Ude and Winterstein, 1996)
have demonstrated the impact of double-counting such second-order effects on various
structural response characteristics.

The methodology to identify the underlying first-order waves is to seek the implied
first-order wave history which, when run through the second-order wave predictor,
yields an incident wave that agrees with the target observed history at each time
point. This identification is performed using a Newton-Raphson scheme to achieve
simultaneous convergence at each complex Fourier component. If the observed history
has N components, we iteratively solve N simultaneous nonlinear equations to identify
the first-order components.

Due to computer memory limitations, the identification of the first-order history
is performed on short contiguous windows of the observed history. This window size
(mlen) can be made equal to the observed history length in WAVEMAKER if the computer
has sufficient RAM and swap space.

17
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3.2 Methodology

The idea here is to identify the implied first-order history 7:(t) (of an observed history
Tobs(t)) Which, when run through the second-order predictor, yields an incident wave
that agrees with 7obs(t). In the first-order wave process 7 (t) (see Eq. 2.7), written as
" a Fourier sum of N frequencies,

N/2 N )
m(t) = 3 Ay cos(wet + 6¢) = Y Xpe** (3.1)
k=1 k=1

we need to identify only the lower half X; components, since the upper half values
are complex conjugates of the lower half. Let us denote Xi = Ui + 1V}, where U, V;
are the real amd imaginary parts of the complex Fourier component X}, respectively.

The predicted second-order wave process (see Eq. 2.11) as evaluated from the
QTFs is '
N/2 N/2 ' .
Ana(t) = 2Re 3 3 X Xp Hjf efomten)t 4 X X:Ho @wment  (3.2)

m=1n=1

This may be rewritten in the form of a Fourier sum as

N
Any(t) = 3 Yie™*! (3.3)
k=1

where Y; = Y;" + Y;~ are the combined sum and difference frequency components.
Here again, Y; possesses conjugate symmetry so that only the lower half contains
unique information. ¥, can be shown to be

Yy o= Y X XoHE

m+n,k

= Z [(UnUn = ViaVa) + «(VinUn + Un V) HE, (3.4)
m+n,k

where the summation symbol indicates a double summation

N/2 N/2
Y =YY such that wm +wn =wk (3.5)
m4+nk m=1n=1
and
Yo = Y XnXpHn,
m—n,k
= Z [(UnU, + ViiVo) + i(VirUp — U, Vo) H,.,, (3.6)

m—n.k
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where
N/2 N/2

> = >~ such that |wy, —ws| = wi (3.7)

m—n,k m=1 n=1

The combined predicted wave process is

Tpred(t) = T (t) + Ane(t) (3.8)

The identification scheme strives to simultaneously match 7jpreq(t) to the observed
wave history 7os(t) at every value of t. Alternatively, we can perform the identi-
fication in the frequency domain and strive to simultaneously match the predicted
Fourier components to the observed Fourier components at all frequencies.

Nobs(t) can be represented in the frequency domain as

N
Tobs (1) = D Zpe ! (3.9)
k=1

where Z,’s also possess conjugate symmetry. If the first-order components are iden-
tified exactly, from Eq.s 3.1, 3.3 and 3.9 we will have

Zy=Xr+Y, ; forallk=1...N/2 (3.10)

Note that the upper half values can be obtained from conjugate symmetry of the
lower half values. In the Newton-Raphson identification scheme we will try to simul-
taneously minimize X +Y; — Z; for k = 1...N/2 to achieve convergence. Now, this
scheme requires a Jacobian of X + Y — Z; with respect to the unknowns Xj—such a
complex differentiation will lead to numerical discontinuities so we will minimize an

equivalent real function /37 f2/N instead, where for k =1...N/2

fi = Re(Xk +Y. — Zk)
fk+N/2 = Im(Xk +Y — Zk) (311)

The identification of the lower half X} values requires a simultaneous solution of
the nonlinear equations in 3.11 such that f; — 0 for all £ = 1..... N, or alternately

V¥ f2/N — 0. We will formulate the Newton-Raphson scheme in vector form as

SECSNETINE "2 R

where bold face letters denote vectors, and vectors X,Y,Z contain the complex
Fourier components X, Y;, Zx, k = 1...N/2, respectively. Here, [TR;%] is a vector
containing the real part of X in the upper half and the imaginary part of X in the

lower half.
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Let us denote

[ ReX U

a = [ |- [+
[ ReY

B = - ImY} (3.13)
[ ReZ

€= _ImZ}

Note that the vector A, of length N, is constructed such that lower half values
are the real parts of Xj; k = 1...N/2 and the upper half is the imaginary part
of Xi; k = 1...N/2. Similarly, B and C, each of length N, contain real and
imaginary parts of the lower half of the second-order correction and the observed
Fourier components, respectively. The elements of A and B are denoted by a; and
by, respectively, where [,k = 1...N. The objective function in vector notation now

18

f(A)=A+B-C (3.14)
A first-order Taylor approximation of f(A) about a given A js
f(A)=1(AD)+[J](A-AO) (3.15)

where [J] is a NxN Jacobian matrix denoting the derivatives of the elements fx in
vector f(A) with respect to each of the unknowns ¢; in A where k,/=1.. .N. The
Newton-Raphson scheme at iteration p + 1 is then formulated as

APH) — A®) 4 1 | (3.16)

where h, a vector of length N, is found from a Cholesky decompositibn followed by
a back-substitution scheme from

[J]h = —f (A®) (3.17)
It can be easily shown from Eq. 3.14 that the entries Ji,; of the matrix [J] are
Ofk Oby,
Jrg = B0, Okt + B4, (3.18)
where 0b/Oq; indicates the partial derivative of by with respect to q;, and
1 ifk=1
Ot = { 0 otherwise (3.19)

To find 8by, /Bay, recall from notation in 3.13

by =ReY;y and bgynye =ImY, for k=1...N/2
a=ImX;=U;, and aunp=ImX;=V, for I=1...N/2
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so that from Eq.s 3.4 and 3.6 we have

OBVt ™ (Ut + Unua) Hip + Y (Unot + Undi) Hi
BUz m+n,k m—n.k .
OReY;
R S — (Vabmi+ Vinbw) Hipn+ Y (Vabt + Vi) Hi (3:20)
BVE m+n,k m-n,k
ImY;
o Y = Z (Vm6n1+Vn5ﬂd) H:m_*_ Z (Vm5n1—Vn6m{) He,
BUI m+nk m—n.k
MY S (Unbt + Unbot) Hp + Y (Unit — Unt) Hi
aV{ m+n’k m—n,k
Schematically,
OReY; | OReY;
_ oy, v,
/1= U+ | 5mb Tomt; (3.21)
U, oV,

where [I] is the identity matrix.

3.2.1 Newton-Raphson Scheme

The algorithm for the Newton-Raphson scheme followed in WAVEMAKER is

Estimate C from observed history (Eq.s 3.9, 3.13)
Initial Guess A = C

Estimate B from A (Eq.s 3.4, 3.6, 3.13)

Find f(A) (Eq. 3.14)

Find [J] (Eq.s 3.20, 3.21)

Solve [J]h = —f(A) to find h

Update A=A -+h

Check Convergence (see next section):

If converged terminate else go to 3

PN OOk W

3.2.2 Convergence Criteria

The Newton-Raphson iteration scheme is terminated based on the following condi-
tions:
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¢ Program Converged: If the rms of the increment vector h = 4/ SVhE/N
is less than a specified tolerance, the program is said to have converged.
This convergence tolerance is specified as a fraction o (= 0.0001 in WAVEMAKER)
of the standard deviation of the observed wave history oy obs-

e Program Diverging: If the rms of the identified first-order history oy,
at any iteration p is larger than a specified fraction 8 (= 200 in WAVEMAKER)
of oy ons then the identification scheme is restarted with a smaller initial
guess which is a truncated and scaled down version of C. The truncation
point is at twice the peak spectral frequency of 7uus(t) and the scaling
factor is factnu” (= 0.9" in WAVEMAKER), where 7 is the number of restarts
needed so far. Thus the restart guess in complex Fourier notation is

| factnu"Zy 5 wy < 2wpeak
Xi = { 0 ; otherwise ‘ (3:22)

e Maximum Iterations Reached: If the maximum allowed iterations,
specified by the variable mziter (= 10 in WAVEMAKER), is reached and the
program has still not converged, then the program restarts the Newton-
Raphson identification scheme with a smaller initial guess = factnu™C.

e Maximum Restarts Reached: If the maximum allowed restarts, speci-
fied by the variable nuiter (= 5 in WAVEMAKER), is reached then the program
terminates the identification scheme in the present window and proceeds
to identify in the next observed history window.

3.2.3 Implementation

The first-order components for the observed wave history, of length Nobs, are identified
in contiguous windows, each of length N < Ngps. The identification analysis is
performed in this way to minimize the computer memory usage by WAVEMAKER. Recall
that the Jacobian matrix [J] is a NxN matrix and the memory usage is directly
governed by the matrix size of this variable. In principle, if there is sufficient memory
we could set N = N, and identify the first-order component for the entire observed
history in one window, however, this is not usually not the case and we resort to

identifying in contiguous windows, as shown in Fig. 3.1.

The first-order component is identified independently in each of the windows in
sequence. The last window is skipped if its contains points less than N.
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Figure 3.1: Identification of first-order wave components is done in contiguous win-
dows of the observed history

3.3 Input Specification

The input specification for the identification of first-order wave process is in a command-
line format similar to the simulation input. A typical input file for identification is:

# Typical input file: syntax description

identify filename dt winsize
depth value

define varlimit value

define gravity value

write history filenamel filename2

# Typical input file: syntax description
Any line beginning with a “#” symbol is treated as a comment line and is ignored.
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Blank lines in the input file are ignored, as well.

define varlimit value

define gravity value
The keywords varlimit, gravity have the same meaning as in the smmlatlon section

and the user is referred to this section to understand the usage of these commands.

depth value
The keyword depth as in the simulation section indicates the water depth at which

the identification analysis is to be performed.

identify filename dt winsize

The keyword identify indicates to the program that the user intends to identify the
underlying first-order wave history for a given observed wave history. This command
requires three arguments which in sequence are: '

e filename: The name of the file, a character string, containing the observed
wave time history for which the underlying first-order wave history i is to
be identified. The data in the first column in filename is read as the
observed wave time history. Any blank lines in filename or lines that do
not begin with a number are ignored.

e dt: This value, a real number, indicates the time resolution of the wave
history provided in filename. In other words, dt is the time difference
between two successive elevation values in the observed wave history.

e winsize: An integer value indicating the window size or the number of
points of the provided wave history to be used in each Newton-Raphson
iteration. The first-order wave components are identified in windows (of

'size winsize) in sequence for the provided time history. If the last window
contains number of points less than winsize then this window is ignored
and the first-order components are not identified in this window.

The maximum value of winsize is mlen set to 512 points in WAVEMAKER and can
be changed according to the user’s needs or according to the computer’s limitations.
Note that we require mlen < 2x mzgrd in the program. These dimension values are
set in this way so as to minimize the memory requirements of WAVEMAKER.

write history filename! filename2

The command write history is used to specify the file names where the identi-
fied histories are to be written. The identified first-order wave history is written in
file filenamel and the identified second-order, combined first- and second-order, and
the observed wave histories are written in file filename2. Default values assigned to
filenamel and filename?2 are gauss.hist and ngauss.hist, respectively.
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3.4 Output Format

The output file names are governed by the command

write history filename! filename2

with default names being gauss.hist and ngauss.hist for filenamel and filename2,
respectively.

filenamel contains the identified first-order wave history in a column of real num-
bers. Each line of this file contains one real number indicating the elevation of the
first-order wave history (see example output files in Appendix B). The time resolu-
tion of this first-order history is d¢, equal to the dt provided in the input file using the
command identify. This file also contains comment lines that begin with a “#” sym-
bol as the first character on the line. The first comment line contains information on
the contents of the file, and the following comment lines contain 3 integers: the first is
the window number being identified, the second is the number of iterations required
for convergence, and the third is the number of restarts needed for convergence.

filename2 contains the second-order correction, the combined first- and second-
order waves, and the observed wave time history. The second-order correction is found
from the identified first-order waves, and these two are added together to yield the
combined second-order wave history. These histories are provided in three columns
in filename2, or in other words each line contains three real numbers: the first is the
second-order wave elevation, the second is the combined identified wave elevation,
and the third is the observed wave history (see example output file in Appendix B).
A match of the total identified and the observed wave histories will verify successfuly
identification by WAVEMAKER. The time resolution of each of these histories is dt.
This file also contains comment lines beginning with a “#” symbol that provides
information similar to the comment lines in filenamel.

3.5 Examples

In this section we present two sample problems to illustrate the use of the identifi-
cation capabilities of WAVEMAKER. Example 1 is based on the example presented in
the simulation chapter. Sample input and output files of this identification example
are included in the distribution diskette. Example 2 presented here demonstrates
the identification of first-order components of a measured wave tank history. Note
that sample input or output files of this second example are not included in the

distribution.
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3.5.1 Example 1

The example of the simulation capabilities of WAVEMAKER involved simulating a second-
order wave history characterized by a JONSWAP spectrum with H; = 12 [m], T, =
14s and v = 3.3 in 70 [m] water depth. We will use the combined second-order
simulated history and try to identify its first-order wave component and compare it
to the input first-order component used to simulate the combined wave history. The

input file for the identification run is

# Wave Identification Input File

identify hist.dat 0.5 512

depth 70.0

write history gauss.ide ngauss.ide
define varlimit 0.01

define gravity 9.807

Alternatively, if we intend to use the default definitions in the program then our
input file could be (this will produce the same output as the extended version of the

input file):

# Wave Identification Input File
# (Alternative format)

identify hist.dat 0.5 512
depth 70.0
write history gauss.ide ngauss.ide

The input file hist.dat contains a column of real numbers (see sample files listed
in the appendix) which will be read in as the observed wave history. The first-
order components will be identified for this observed history and placed in the file
gauss.ide. The corresponding second-order components, the combined identified
history and the observed wave history are written in the file ngauss.ide.

Output File Contents
gauss.ide | Identified First-Order Time History
ngauss.ide | Corresponding Second-Order Time History
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Figure 3.2 shows the observed wave spectrum and the identified first-order spec-
trum along with the corresponding second-order wave spectrum. We see that small
second-order contribution to the power spectrum, roughly a decade below the first-
order spectrum even at frequencies twice the peak spectral frequency, suggests the
difficulty in identifying these components. Figure 3.3 shows the observed wave his-
tory and the identified first-order wave history in cycles around the maximum crest
height. Compare this to the simulation example where we solve the forward problem
of finding the combined (first- plus second-order) history from a given underlying
first-order wave spectrum. The identified first-order component in Fig. 3.3 is almost
the same as the underlying first-order component (denoted Gaussian) in Fig. 2.2 and

these two are shown together in Fig. 3.4. Note how close the two first-order compo-

nents are, and any numerical differences can probably be further reduced by using a
larger window size (greater than 512, for example) in the identification scheme.

3.5.2 Example 2

In this example we will identify the underlying first-order wave component for a
measured wave tank history that reflects a water depth of about 300m. For this
example the measured history is located in file wave.dat and has a dt = 0.424264
seconds. We will use windows of winsize = 512 to identify the first-order components.
The input to WAVEMAKER is:

# Wave Identification Input File
# using default definitions

identify wave.dat 0.424264 512
depth 300.0

Figure 3.5 shows a portion where the maximum crest height occurs in the mea-
sured wave tank history. The figure also shows the identified first-order and the
corresponding second-order wave histories. Note how the second-order wave compo-
nent affects the first-order peaks, amplifying the crests and moderating the troughs.
Figure 3.6 shows the wave spectra for the measured history along with the first-order
and the second-order spectra. Again, observe that the second-order energy is signifi-
cantly small compared to the first-order, however, phase locking of the first- and the
second- component (Fig. 3.5) leads to larger crests and flatter troughs.
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Chapter 4

Distribution

The WAVEMAKER routine and example files have been distributed on a DOS formatted
3.5 inch floppy diskette. The diskette contains the source code files (of the form * .£),
example input (*.inp), and output files (*.sta, *.his, and *.ide). The diskette
also contains this manual in postscript format in manual.ps.

4.1 Copying the Diskette

Copy the contents of the diskette on to your host computer (computer on which you
will run WAVEMAKER). After the copying is done, your host computer should have:

e Example input files wavmkr . inp, wavide .inp, and hist.dat.
e Example output files gauss.his, ngauss.his, gauss.sta, ngauss.sta,

gauss.ide, and ngauss.ide.
e manual.ps containing this manual in postscript format
e all the source files *.f and Makefile

Table 4.1 shows the input and output files that are specific to the simulation and to
the identification examples. '

31




32

Chapter 4. Distribution

Table 4.1: Distributed Files for Sirﬁulation and Identification Examples

Simulation Example

File Type | File Name Description
Input File | wavmkr.inp | Input to WAVEMAKER
Output Files | gauss.his Simulated first-order wave histo-

ries at each specified location

ngauss.his

Simulated combined first- and
second-order wave histories at
each specified location

gauss.sta Statistics of the simulated first-
order histories at each specified lo-
cation

ngauss.sta | Statistics of the simulated com-

bined histories at each specified lo-
cation

Identification Example

File Type | File Name Description
Input Files | wavide.inp | Input to WAVEMAKER
hist.dat Observed wave history for which
underlying first-order history is to
be identified
Output Files | gauss.ide Identified first-order wave history

ngauss.ide

Identified second-order, combined
first- and second-order, and ob-
served wave histories

4.2 Compiling the Source

On a Unix workstation, the Makefile can be used to build the WAVEMAKER executable.
To compile on your host Computer:

e change directory to the subdirectory containing the source code files
e type “make wavmkr” (without the double quotes) at the Unix prompt

and press return

The above will compile all the files listed in Makefile and link them to make the
executable wavmkr. Note that the executable wavmkr is still in the current directory,
and may be moved to the directory which contains the input file, or you can specify
the path to the executable file in order to run it from other directories.
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On other operating systems and architectures, follow whatever is the standard
procedure for compiling and linking FORTRAN source code distributed over multiple
files.

WAVEMAKER has been developed on a Sun Sparcstation2, using version 1.4 of the ‘
Sun FORTRAN compiler. Every attempt has been made to adhere to the ANSI
FORTRAN 77 standard, ensuring portability of the code.

4.3 Executing the Routine

At the Unix prompt type “wavmkr < wavmkr.inp” (without the double quotes) in
order to execute WAVEMAKER and perform the simulation example analysis. The pro-
gram reads input from the standard logical input unit. The logical units for standard
input, standard output, and standard error are all used in WAVEMAKER. On the Sun
compiler, 0 is used for standard error, 5 is standard input and 6 is standard out-
put. If the appropriate unit numbers are different, they can be set using the IOER,
TIOIN, and IOOU variables in the WAVEMAKER driver program, and the package can be
recompiled.

Run the example problem using the complied code to check if you get the same
output as provided in the example output files. Note that wavmkr will overwrite any
existing file if you specify its name as the target output file using the write command

in the input file.

Similarly, at the Unix prompt type “wavmkr < wavide.inp” (without the double
quotes) in order to execute WAVEMAKER and perform the identification example anal-
ysis. The resulting output histories can be compared to the corresponding example
output histories to verify successful compilation of WAVEMAKER.
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Output File: gauss.his
# Underlying First-Order Wave Process
# Wave Elevation at Spatial Location
# Time(sec.) 0.00 60.00
0.000000 -3.189 -4.754
0.500000 -1.754 -5.466
1.000000 -0.239 -5.410
1.500000 0.906 -4.667
2.000000 1.436 -3.660
2.500000 1.681 -2.714
3.000000 1.623 -1.676
3.500000 1.595 -0.875
4.000000 1.862 -0.137
4.500000 2.282 0.582
5.000000 2.802 1.211
5.500000 3.230 1.379
6.000000 3.263 1.263
6.500000 2.448 1.252
7.000000 1.403 1.572
7.500000 0.5653 2.166
8.000000 -0.12%1 2.447
8.500000 -0.773 3.076
9.000000 -1.216 3.472
9.500000 -1.588 3.272
10.000000 -2.433 2.507
10.500000 -3.543 1.492
11.000000 -4.310 0.022
11.500000 -4.343 -1.441
2046.500000 -3.871 0.056
2047.000000 -4.266 -1.729
2047.500000 -4.040 -3.447
Note that “” indicates more numbers. Since the files are long, we present truncated versions

of the output files.
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#
# Time(sec.)
0.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000
.000000
.500000

W W WO~~~ O dWwWwhN-P+-»O

A A e e
W WM, PP, OO

2046.500000
2047.000000
2047.500000

# Total Second-Order Wave Process

Wave Elevation at Spatial Location
0.00 60.00

-3.487 -4.814

-2.747 -5.039

-0.970 -4.773

0.976 -4.589
1,927 -3.459
1.920 -2.768
2.210 -1.844
1.738 -0.534
2.034 -0.256
2.353 0.534
2.974 1.072
3.5695 2.033
3.481 1.523
1.913 1.684
1.236 1.334
0.644 2.374
0.019 2.724
-0.826 3.160
-0.572 3.945
-1.304 3.330
-2.734 2.573
-3.700 1.296

-3.854 -1.195
-4.087 -1.811
-3.686 -2.346
-2.784 -2.356
-1.532 -2.498
~1.026 -2.256

-3.594 -1.165
-3.918 -3.159
-3.660 -4.297
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QOutput File: gauss.éta

# Underlying First-Order Wave Process

# Location Mean Sigma Skewness Kurtosis Minimum Maximum
0.00 0.9966E-09 2.975 0.3566E-01 2.917 -8.928 10.41
60.00 0.1000E-08 2.975 0.2010E-01 2.919 =9.241 9.784

Output File: ngauss.sta

# Total Second-Order Wave Process

# Location Mean Sigma Skewness Kurtosis Minimum Maximum
0.00 -.3673E-09 3.027 0.1949 2.975 -8.235 11.85
60.00 -.1193E-08 3.037 0.1778 2.988 -8.576 11.18




Appendix B

Input /Output Files for Identification
Example
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42 Appendix B. Input/Output Files for Identification Example

Input File: hist.dat

-3.487
-2.747
-0.970
0.975
1.927
1.920
2.210
1.738
2.034
2.363
2.974
3
3
1
1
0
0

.595
.480
.914
.236
.644
.019
-0.826
-0.572
-1.304
-2.734
-3.700

-1.458
-2.043
-2.767
-3.241
-3.594
-3.918
-3.660
Note that %" indicates more numbers. Since the files are long, we present truncated versions

of the output files.
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# Indentified First-Order Wave History
# Window: number iterationmns restarts
# Window 1 6 0
-2.9780
-1.5528
-0.1932
1.0374
1.4503

-0.4398
0.9539
-1.0007
# Window 2 8 0
0.6255
.8085
.5614
.5256
.0275
.9476
.1145

= O O OO

# Window 8 5 0
-2.2065 '
-1.4332
-1.1666
-1.0438
-0.8492

-3.2288
~-3.7402
-4.1472
-3.4963
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Output File: ngauss.ide

# Identified 2nd-Order Wave, Identified Total Wave, Input Wave History
# Window: number jiterations restarts
# Window 1 6 0

-0.5090 -3.4870 -3.4870

-1.1942 -2.7470 -2.7470

-0.7768 -0.9700 -0.9700

-0.0624 0.9750 0.9750

0.4767 1.9270 1.9270

-0.0489 -1.7070 -1.7070
-0.8702 -1.3100 -1.3100

-0.3039 0.6500 0.6500
2.0597 1.0590 1.0590
# Window 2 8 0
0.1029 0.7284 0.7320
0.4542 1.2627 1.2660
0.3126 0.8740 0.8710
0.0864 0.6120 0.6120
0.1123 1.1399 1.1390
0.4375 1.3851 1.3860
0.0240 1.1385 1.1380
# Window 8 5 0

-0.3825 -2.5890 -2.5890
0.3802 -1.0530 ~-1.0530
0.3296 -0.8370 -0.8370
0.2628 -0.7810 -0.7810
0.1202 -0.7290 -0.7290

-0.0122 -3.2410 -3.2410
0.1462 -3.5940 -3.5940
0.2292 -3.9180 -3.9180

-0.1637 -3.6600 -3.6600




Appendix C

Random Models of Second-Order Waves
and Local_ Wave Statistics

The following paper demonstrates the application of these nonlinear wave models and
simulation techniques. It also shows how wave moments can be estimated analyti-
cally, and resulting estimates of extreme waves formed. Finally, various local wave
characteristics found from the simulation are compared with field and wave tank data.

It has appeared in the Proceedings of the 10th Engineering Mechanics Specialty
Conference, ASCE, held in Boulder, May 1995. '
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RANDOM MODELS OF SECOND-ORDER WAVES
AND LocAL WAVE STATISTICS

Steven R. Winterstein and Alok K. Jha
- Civil Eng. Dept., Stanford University

Abstract

We consider second-order random models of ocean waves at arbitrary water
depths. We derive convenient new analytical results for wave moments, and show
results for crests and other local wave statistics. Theoretical predictions are com-
pared with observed wave tank results in extreme seas.

Introduction

Nonlinear hydrodynamic effects are of growing interest for ocean structures and vessels.
This has spurred development of efficient methods to estimate statistics of second-order
hydrodynamic models (e.g., Winterstein et al, 1994). Here we apply these to one of
the most fundamental nonlinearities in ocean engineering: the wave elevation 7(t) at a
fixed spatial location.

" Linear wave theory results in a Gaussian model of 7(t). This ignores the marked
asymmetry of 7(t): wave crests that systematically exceed subsequent troughs. This
has several practical implications: (1) asymmetric waves are more likely to strike decks
of offshore platforms, particularly older Gulf-of-Mexico structures with fairly low decks;
and (2) unusually large dynamic response has been found in high, steep waves that may
not follow linear theory.

Second-order random wave models are not new; indeed, they have been a research
topic for more than 30 years (e.g., Longuet-Higgins, 1963) and remain so today (e.g.,
Marthinsen and Winterstein, 1992; Hu and Zhao, 1993; Vinje and Haver, 1994). How-
ever, they have not yet entered common offshore engineering practice, which applies
either (1) random linear (Gaussian) waves or (2) regular Stokes waves that fail to pre-
serve Sp(w), the wave power spectrum. Several drawbacks to second-order random
waves may be suggested: (1) they omit potentially important higher-order effects; and
(2) convenient statistical analysis methods for second-order models are often lacking.
We seek to address both concerns here—the first through systematic comparison of
theory with observed wave tank results in extreme seas. The second issue is met by
fitting new analytical results for wave moments, and using these to construct simple
Hermite models of extreme crests.

Statistics of Second-Order Models

Our “input” is the first-order, Gaussian wave process 7;(t) from linear theory. The
standard Fourier sum for 7;(t) is then ReY" C exp(iwkt), in which Cy=A exp(idx) in
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terms of Rayleigh distributed amplitudes, Ay, and uniformly distributed phases ¢.
The resulting “output” is z(t)=2z1(t) + z2(t), in which

21 =Re 3 Celze™*; z;=Re 3. 3 CrCi[Hfe ) 4 Hgeflr=e] (1)
k k1

Here the transfer function Hy describes first-order effects, while H ,':} and H,; reflect
second-order effects at sums and differences of all wave frequencies (wi £ wi). In our
case z(t) is the second-order wave itself, for which H}, and Hy; are given analytically
(e.g., Marthinsen and Winterstein, 1992), and Hy=1. The same analysis applies more
generally to the diffracted wave, applied force and response of large-volume structures,
with numerical Hx and Hy; estimates from second-order diffraction (Winterstein et al,
1994).

Because z(t) is non-Gaussian, interest focuses on its skewness a3 and kurtosis ay.
In terms of the significant wave height Hs=40,, and peak spectral period Tp, these

are
030'2 = m31(Tp)H§ + m33(TP)Hg~ (2)

(as — 3)0d = mao(Tp)HS + maa(TP)H3 (3)

The m;;(Tp) are “response moment influence coefﬁcients,” the contribution to response
moment (cumulant) ¢ due to terms of order O(z}). In general these are conveniently
calculated from Kac-Siegert analysis (Egs. 12-15, Winterstein et al, 1994). We assume
here the spectrum of 7;(2) is of the form HZTp f(wTp), so that n1(t) scales in amplitude

with Hg and in time with Tp. .
It is useful to define the unitless wave steepness sp=Hg/Lp, in which the charac-

teristic wave length Lp=gT%/2x uses the linear dispersion relation. For deep-water
waves the coefficients m;;(Tp) are proportional to L7’ . Retaining leading terms in sp
from Egs. 2-3:

a3z = k3SP; Qg4 — 3= k4a§ (4)
In particular, for a JONSWAP wave spectrum with peakedness factor v, we have fit
the following k3 and k4 expressions to results for a wide range of depths:

_ —a_§ _ —.084 .i -1.22, _ a4 — 3 . -.020
ka=>= 5.45y~%%4 4 '135(Lp) ; ky= = 1.41y (5)

The second term in this result for a3 reflects the effect of a finite water depth d: in
shallower water a3 grows, as the waves begin to “feel” the bottom.

Note also that while the skewness varies linearly with steepness, the kurtosis varies
quadratically. This suggests that nonlinear effects will be most strongly displayed by
the skewness, and hence by the wave crests rather than the total peak-to-trough wave
height. This second-order model may less accurately predict kurtosis, however, as
higher-order omitted effects may be of the same order of magnitude.

Numerical Results

Figure 1 compares skewness predictions with results from wave tank tests. The tests
include 18 large seastates (target Hs=14.5m-15.5m), each over 3 hours in length, at
water depths exceeding 300m. Figure 1 shows the resulting skewness and steepness in
each hour of each test. While there is considerable scatter, regression on these data
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gives the estimated slope k3=5.50, remarkably close to Eq. 5 with y=1. The scatter
in Figure 1 is also consistent: the observed oq, is found well-predicted by simulated
hourly segments of second-order seastates. Figure 2 shows kurtosis estimates to deviate,
however. The data yield the estimate k4=4.2, roughly 3 times the value in Eq. 5
regardless of 7. This again supports theory, which suggests that unlike the skewness,
the kurtosis may be notably affected by unmodelled, higher-order effects.

Wave Crests. Figure 3 shows the observed distribution of crest heights. These
results combine six seastates with the same target spectrum, and hence give roughly
20 hours of similar wave conditions. As expected the Rayleigh model, based on linear
theory, is significantly unconservative. An alternative empirical model (Haring et al,
1976) offers an improvement, but only mildly changes the Rayleigh for these deep-water
conditions. Better agreement is found from a Non-Gaussian (Hermite) model, which
uses a cubic distortion of the normal process (and hence its Rayleigh peaks) to match
a3 and a4 (Winterstein et al, 1994). Here estimates of a3 and a4 use Eq. 5, tripling its
k, value to reflect unmodelled effects. These give excellent agreement with observed
moments, though still somewhat unconservative crest predictions at higher levels.

Local Wave Characteristics. Figure 4 shows the conditional mean and standard
deviation of crest height, given the peak-to-trough wave height. Again the data use 20
hours of wave tank studies, all with the same target wave spectrum. Also shown are
corresponding estimates from simulation of Gaussian and Non-Gaussian (second-order)
models. Due to the symmetry of the Gaussian model, its crests are on average 50% of
the total wave height. The data shows systematically larger crests. The second-order
model is found to predict this vertical asymmetry quite accurately.

We may also consider horizontal wave asymmetry: do crest front periods—during
which 7 increases from its mean level to a crest—differ statistically from subsequent
crest back periods? This temporal asymmetry is not predicted by either the Gaussian
or second-order model. It is difficult, however, to find this asymmetry in the data:
Figure 5 shows observed crest fronts to be quite close to 50% of the total crest period.
Finally, Figure 6 shows the variation of wave period with crest height. All results
show the same trend of increasing periods over small-to-moderate heights, and roughly
constant period at large heights. The Non-Gaussian model appears to somewhat better
predict results at larger crest height levels.
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